Reinterpretation and Enhancement of Signal-Subspace-Based Imaging Methods for Extended Scatterers
نویسندگان
چکیده
Interior sampling and exterior sampling (or enclosure) signal-subspace-based imaging methodologies for extended scatterers derived in previous work are reformulated and reinterpreted in terms of the concepts of angles and distances between subspaces. The insight gained from this reformulation renders a broader, more encompassing inversion methodology based on a (pseudo) cross-coherence matrix associated to the singular vectors of the scattering or response matrix and the singular vectors intrinsic to a given, hypothesized support region for the scatterers (under a known background Green’s function associated to a known embedding medium where the scatterers reside). A number of new imaging functionals based on that cross-coherence matrix are proposed and numerically shown to perform well in both imaging and shape reconstruction problems. The proposed approaches do not require for their implementation the estimation of a cutoff in the singular value spectrum separating signal from noise subspaces, which is a common computational difficulty in signal subspace methods. In the shape reconstruction context it is also shown how to combine the signal subspace approach with the level set method.
منابع مشابه
A Data Focusing method for Microwave Imaging of Extended Targets
This paper presents a data focusing method (DFM) to image extended targets using the multiple signal classification (MUSIC) algorithm. The restriction on the number of transmitter-receiver antennas in a microwave imaging system deteriorates profiling an extended target that comprises many point scatterers. Under such situation, the subspace-based linear inverse scattering methods, like the MUSI...
متن کاملComparative assessment of the accuracy of maximum likelihood and correlated signal enhancement algorithm positioning methods in gamma camera with large square photomultiplier tubes
Introduction: The gamma cameras, based on scintillation crystal followed by an array of photomultiplier tubes (PMTs), play a crucial role in nuclear medicine. The use of square PMTs provides the minimum dead zones in the camera. The camera with square PMTs also reduces the number of PMTs relative to the detection area. Introduction of a positioning algorithm to improve the spat...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملSpeech Enhancement Through an Optimized Subspace Division Technique
The speech enhancement techniques are often employed to improve the quality and intelligibility of the noisy speech signals. This paper discusses a novel technique for speech enhancement which is based on Singular Value Decomposition. This implementation utilizes a Genetic Algorithm based optimization method for reducing the effects of environmental noises from the singular vectors as well as t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 3 شماره
صفحات -
تاریخ انتشار 2010